Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
International Journal of Public Health Science ; 12(1):187-195, 2023.
Article in English | Scopus | ID: covidwho-2244818

ABSTRACT

Hospital wastewater contains heavy metals that threaten environmental and human health through bioaccumulation and biomagnification. Each heavy metal contributes a different impact on human health and the environment. Monitoring the heavy metals in wastewater is essential to prevent those severe impacts. However, it is still rare for a study to assess heavy metals obtained from the discharge of hospital wastewater in Indonesia. Therefore, this study investigated 14 parameters of heavy metals in hospital wastewater. We tested wastewater quality from September 2021 to February 2022, with SNI 6989-59-2008 sampling methods with 14 parameters. Results show that over 14 parameters are still below the threshold value and other previous studies. It might be because the biological treatment used in the hospital wastewater treatment plant (HWWTP) reduces these micropollutants efficiently. The fluidized bed biofilm reactor (FBBR) system is an aerobic process with microorganisms attached to the bio-green. This technique is to form suspensions of solid particles in sparse media with gas streams for chemical or physical processes. The sewage discharge reveals the occurrence of heavy metals in hospital wastewater, even though it does not reveal a high concentration due to the effectiveness of the FBBR system in HWWTP. © 2023, Intelektual Pustaka Media Utama. All rights reserved.

2.
Sci Total Environ ; : 160498, 2022 Nov 25.
Article in English | MEDLINE | ID: covidwho-2240122

ABSTRACT

The COVID-19 pandemic has caused a global health crisis, and wastewater-based epidemiology (WBE) has emerged as an important tool to assist public health decision-making. Recent studies have shown that the SARS-CoV-2 RNA concentration in wastewater samples is a reliable indicator of the severity of the pandemic for large populations. However, few studies have established a strong correlation between the number of infected people and the viral concentration in wastewater due to variations in viral shedding over time, viral decay, infiltration, and inflow. Herein we present the relationship between the number of COVID-19-positive patients and the viral concentration in wastewater samples from three different hospitals (A, B, and C) in the city of Belo Horizonte, Minas Gerais, Brazil. A positive and strong correlation between wastewater SARS-CoV-2 concentration and the number of confirmed cases was observed for Hospital B for both regions of the N gene (R = 0.89 and 0.77 for N1 and N2, respectively), while samples from Hospitals A and C showed low and moderate correlations, respectively. Even though the effects of viral decay and infiltration were minimized in our study, the variability of viral shedding throughout the infection period and feces dilution due to water usage for different activities in the hospitals could have affected the viral concentrations. These effects were prominent in Hospital A, which had the smallest sewershed population size, and where no correlation between the number of defecations from COVID-19 patients and viral concentration in wastewater was observed. Although we could not determine trends in the number of infected patients through SARS-CoV-2 concentrations in hospitals' wastewater samples, our results suggest that wastewater monitoring can be efficient for the detection of infected individuals at a local level, complementing clinical data.

3.
Int J Environ Res Public Health ; 20(4)2023 Feb 06.
Article in English | MEDLINE | ID: covidwho-2232597

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has spread across the globe since the end of 2019, posing significant challenges for global medical facilities and human health. Treatment of hospital wastewater is vitally important under this special circumstance. However, there is a shortage of studies on the sustainable wastewater treatment processes utilized by hospitals. Based on a review of the research trends regarding hospital wastewater treatment in the past three years of the COVID-19 outbreak, this review overviews the existing hospital wastewater treatment processes. It is clear that activated sludge processes (ASPs) and the use of membrane bioreactors (MBRs) are the major and effective treatment techniques applied to hospital wastewater. Advanced technology (such as Fenton oxidation, electrocoagulation, etc.) has also achieved good results, but the use of such technology remains small scale for the moment and poses some side effects, including increased cost. More interestingly, this review reveals the increased use of constructed wetlands (CWs) as an eco-solution for hospital wastewater treatment and then focuses in slightly more detail on examining the roles and mechanisms of CWs' components with respect to purifying hospital wastewater and compares their removal efficiency with other treatment processes. It is believed that a multi-stage CW system with various intensifications or CWs incorporated with other treatment processes constitute an effective, sustainable solution for hospital wastewater treatment in order to cope with the post-pandemic era.


Subject(s)
COVID-19 , Water Purification , Humans , Wastewater , Waste Disposal, Fluid/methods , Pandemics , SARS-CoV-2 , Hospitals , Water Purification/methods , Wetlands
4.
Frontiers in Environmental Science ; 10, 2023.
Article in English | Scopus | ID: covidwho-2215258

ABSTRACT

Combined with human-to-human contact, the potential for SARS-CoV-2 virus transmission via aerosols and feces raises the urgency for effective treatment of hospital wastewater (HWW), which has been assumed as an important source of pathogenic microorganisms spreading into aquatic environments. However, there are few reviews discussing the presence and removal of pathogens in hospital wastewaters matrices. This review summarizes the pathogenic microorganisms including bacteria, fungi, viruses and parasites present in hospital wastewater, the related diseases and treatment processes. In addition, the removal of pathogens during hospital wastewater treatment process is reviewed, including the preliminary process, secondary process and tertiary process. Due to the growing concerns over the effects of the current global pandemic on hospital wastewater treatment process, further research is necessary to investigate the actual fate of pathogens in hospital wastewater and optimize disinfection processes. Copyright © 2023 Yuan and Pian.

5.
International Journal of Public Health Science ; 12(1):187-195, 2023.
Article in English | Scopus | ID: covidwho-2203638

ABSTRACT

Hospital wastewater contains heavy metals that threaten environmental and human health through bioaccumulation and biomagnification. Each heavy metal contributes a different impact on human health and the environment. Monitoring the heavy metals in wastewater is essential to prevent those severe impacts. However, it is still rare for a study to assess heavy metals obtained from the discharge of hospital wastewater in Indonesia. Therefore, this study investigated 14 parameters of heavy metals in hospital wastewater. We tested wastewater quality from September 2021 to February 2022, with SNI 6989-59-2008 sampling methods with 14 parameters. Results show that over 14 parameters are still below the threshold value and other previous studies. It might be because the biological treatment used in the hospital wastewater treatment plant (HWWTP) reduces these micropollutants efficiently. The fluidized bed biofilm reactor (FBBR) system is an aerobic process with microorganisms attached to the bio-green. This technique is to form suspensions of solid particles in sparse media with gas streams for chemical or physical processes. The sewage discharge reveals the occurrence of heavy metals in hospital wastewater, even though it does not reveal a high concentration due to the effectiveness of the FBBR system in HWWTP. © 2023, Intelektual Pustaka Media Utama. All rights reserved.

6.
Open Forum Infectious Diseases ; 9(Supplement 2):S455, 2022.
Article in English | EMBASE | ID: covidwho-2189729

ABSTRACT

Background. WW surveillance enables real time monitoring of SARS-CoV-2 burden in defined sewer catchment areas. Here, we assessed the occurrence of total, Delta and Omicron SARS-CoV-2 RNA in sewage from three tertiary-care hospitals in Calgary, Canada. Methods. Nucleic acid was extracted from hospital (H) WW using the 4S-silica column method. H-1 and H-2 were assessed via a single autosampler whereas H-3 required three separate monitoring devices (a-c). SARS-CoV-2 RNA was quantified using two RT-qPCR approaches targeting the nucleocapsid gene;N1 and N200 assays, and the R203K/G204R and R203M mutations. Assays were positive if Cq< 40. Cross-correlation function analyses (CCF) was performed to determine the timelagged relationships betweenWWsignal and clinical cases. SARS-CoV-2 RNA abundance was compared to total hospitalized cases, nosocomial-acquired cases, and outbreaks. Statistical analyses were conducted using R. Results. Ninety-six percent (188/196) of WW samples collected between Aug/ 21-Jan/22 were positive for SARS-CoV-2. Omicron rapidly supplanted Delta by mid-December and this correlated with lack of Delta-associated H-transmissions during a period of frequent outbreaks. The CCF analysis showed a positive autocorrelation between the RNA concentration and total cases, where the most dominant cross correlations occurred between -3 and 0 lags (weeks) (Cross-correlation values: 0.75, 0.579, 0.608, 0.528 and 0.746 for H-1, H-2, H-3a, H-3b and H-3c;respectively). VOC-specific assessments showed this positive association only to hold true for Omicron across all hospitals (cross-correlation occurred at lags -2 and 0, CFF value range between 0.648 -0.984). We observed a significant difference in median copies/ ml SARS-CoV-2 N-1 between outbreak-free periods vs outbreaks for H-1 (46 [IQR: 11-150] vs 742 [IQR: 162-1176], P< 0.0001), H-2 (24 [IQR: 6-167] vs 214 [IQR: 57-560], P=0.009) and H-3c (2.32 [IQR: 0-19] vs 129 [IQR: 14-274], P=0.001). Conclusion. WWsurveillance is a powerful tool for early detection andmonitoring of circulating SARS-CoV-2VOCs.Total SARS-CoV-2 andVOC-specificWWsignal correlated with hospitalized prevalent cases of COVID-19 and outbreak occurrence.

7.
Environ Sci Pollut Res Int ; 29(57): 85577-85585, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2174812

ABSTRACT

The current outbreak of coronavirus disease (COVID-19) has led to creating a public health emergency conditions since 2019. COVID-19, which is caused by SARS-CoV-2, is spread via human-to-human transmission by direct contact or droplets. Through conducting this study, we were looking for detecting SARS-CoV-2 in wastewater produced in Iran country (Ardabil, Nir, Khalkhal, and Kowsar) (wastewater collection network, wastewater treatment plant, and hospital wastewater). In this research, samples (n=76) were collected from influent and effluent of municipal and hospital wastewater treatment plants, and some samples were also collected from Ardabil municipal wastewater manholes. The sampling duration included the white (lower risk of COVID-19) and red (high risk of COVID-19) conditions. Samples were stored at -20 °C for further diagnostic tests. The specific primer and probe real-time reverse transcriptase-polymerase chain reaction (real-time PCR) targeting ORF1ab and N genes (nucleoprotein gene) were applied to detect viral genomes of the SARS-CoV-2 virus in the wastewater samples. Out of 76 samples, a total of 15 samples (19.73%) collected from wastewater in Ardabil province (Ardabil, Nir, Khalkhal, and Kowsar), were positive in terms of SARS-CoV-2. Wastewater epidemiology can facilitate detection of the incidence of pathogens through metropolises, measurement of population prevalence without direct testing, and provision of information to the public health system about the efficiency of intervening efforts. Graphical abstract.


Subject(s)
COVID-19 , Water Purification , Humans , SARS-CoV-2 , Wastewater , COVID-19/epidemiology , Hospitals
8.
Sci Total Environ ; 867: 161424, 2023 Apr 01.
Article in English | MEDLINE | ID: covidwho-2165840

ABSTRACT

The detection of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) RNA in wastewater can be used as an indicator of the presence of SARS-CoV-2 infection in specific catchment areas. We conducted a hospital-based study to explore wastewater management in healthcare facilities and analyzed SARS-CoV-2 RNA in the hospital wastewater in Dhaka city during the Coronavirus disease (COVID-19) outbreak between September 2020-January 2021. We selected three COVID-hospitals, two non-COVID-hospitals, and one non-COVID-hospital with COVID wards, conducted spot-checks of the sanitation systems (i.e., toilets, drainage, and septic-tank), and collected 90 untreated wastewater effluent samples (68 from COVID and 22 from non-COVID hospitals). E. coli was detected using a membrane filtration technique and reported as colony forming unit (CFU). SARS-CoV-2 RNA was detected using the iTaq Universal Probes One-Step kit for RT-qPCR amplification of the SARS-CoV-2 ORF1ab and N gene targets and quantified for SARS-CoV-2 genome equivalent copies (GEC) per mL of sample. None of the six hospitals had a primary wastewater treatment facility; two COVID hospitals had functional septic tanks, and the rest of the hospitals had either broken onsite systems or no containment of wastewater. Overall, 100 % of wastewater samples were positive with a high concentration of E. coli (mean = 7.0 log10 CFU/100 mL). Overall, 67 % (60/90) samples were positive for SARS-CoV-2. The highest SARS-CoV-2 concentrations (median: 141 GEC/mL; range: 13-18,214) were detected in wastewater from COVID-hospitals, and in non-COVID-hospitals, the median SARS-CoV-2 concentration was 108 GEC/mL (range: 30-1829). Our results indicate that high concentrations of E. coli and SARS-CoV-2 were discharged through the hospital wastewater (both COVID and non-COVID) without treatment into the ambient water bodies. Although there is no evidence for transmission of SARS-CoV-2 via wastewater, this study highlights the significant risk posed by wastewater from health care facilities in Dhaka for the many other diseases that are spread via faecal oral route. Hospitals in low-income settings could function as sentinel sites to monitor outbreaks through wastewater-based epidemiological surveillance systems. Hospitals should aim to adopt the appropriate wastewater treatment technologies to reduce the discharge of pathogens into the environment and mitigate environmental exposures.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , Wastewater , RNA, Viral , Sanitation , Bangladesh/epidemiology , Escherichia coli , Hospitals
9.
Appl Water Sci ; 12(12): 256, 2022.
Article in English | MEDLINE | ID: covidwho-2075696

ABSTRACT

Since 2019, the outbreak of coronavirus with acute respiratory symptoms has caused an epidemic worldwide. Transmission of the disease through respiratory droplets was announced as the main mode of transmission in 2020. But in this study, we discussed the method of indirect transmission of the virus through sewage. In this study, effluents related to urban and hospital wastewater treatment plants in 5 regions of Ardabil Province (northwest of Iran) were investigated. In this research, 120 samples were kept in pre-test conditions (temperature -20 degrees Celsius). To identify the viral genome, special primer and chain reaction probe targeting ORF1ab and N (nucleoprotein gene) genes were used. Out of a total of 120 samples, a total of 3 samples were positive. Wastewater epidemiology (WBE) can be considered as a cost-effective method in the diagnosis and prediction of pathogenic agents. And be considered an effective method for decision-making in order to protect the health of citizens.

10.
Chemosphere ; 308(Pt 1): 136265, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2003926

ABSTRACT

The effective treatment of hospital sewage is crucial to human health and eco-environment, especially during the pandemic of COVID-19. In this study, a demonstration project of actual hospital sewage using electron beam technology was established as advanced treatment process during the outbreak of COVID-19 pandemic in Hubei, China in July 2020. The results indicated that electron beam radiation could effectively remove COD, pathogenic bacteria and viruses in hospital sewage. The continuous monitoring date showed that the effluent COD concentration after electron beam treatment was stably below 30 mg/L, and the concentration of fecal Escherichia coli was below 50 MPN/L, when the absorbed dose was 4 kGy. Electron beam radiation was also an effective method for inactivating viruses. Compared to the inactivation of fecal Escherichia coli, higher absorbed dose was required for the inactivation of virus. Absorbed dose had different effect on the removal of virus. When the absorbed dose ranged from 30 to 50 kGy, Hepatitis A virus (HAV) and Astrovirus (ASV) could be completely removed by electron beam treatment. For Rotavirus (RV) and Enterovirus (EV) virus, the removal efficiency firstly increased and then decreased. The maximum removal efficiency of RV and EV was 98.90% and 88.49%, respectively. For the Norovirus (NVLII) virus, the maximum removal efficiency was 81.58%. This study firstly reported the performance of electron beam in the removal of COD, fecal Escherichia coli and virus in the actual hospital sewage, which would provide useful information for the application of electron beam technology in the treatment of hospital sewage.


Subject(s)
COVID-19 , Enterovirus , Viruses , Bacteria , Electrons , Escherichia coli , Hospitals , Humans , Pandemics , Sewage , Wastewater/microbiology
11.
Environ Toxicol Chem ; 41(2): 298-311, 2022 02.
Article in English | MEDLINE | ID: covidwho-1905846

ABSTRACT

The presence of pharmaceutically active compounds (PACs) in the environment and their associated hazards is a major global health concern; however, data on these compounds are scarce in developing nations. In the present study, the existence of 39 non-antimicrobial PACs and six of their metabolites in wastewater from hospitals and adjacent surface waters in Sri Lanka was investigated from 2016 to 2018. The highest amounts of the measured chemicals, including the highest concentrations of atorvastatin (14,620 ng/L) and two metabolites, mefenamic acid (12,120 ng/L) and o-desmethyl tramadol (8700 ng/L), were detected in wastewater from the largest facility. Mefenamic acid, gemfibrozil, losartan, cetirizine, carbamazepine, and phenytoin were detected in all the samples. The removal rates in wastewater treatment were 100% for zolpidem, norsertaline, quetiapine, chlorpromazine, and alprazolam. There was substantial variation in removal rates of PACs among facilities, and the overall data suggest that treatment processes in facilities were ineffective and that some PAC concentrations in the effluents were increased. The estimated risk quotients revealed that 14 PACs detected in water samples could pose low to high ecological risk to various aquatic organisms. Compounds such as ibuprofen, tramadol, and chlorpromazine detected in untreated and treated wastewater at these facilities pose a high risk to several aquatic organisms. Our study provides novel monitoring data for non-antimicrobial PAC abundance and the associated potential ecological risk related to hospitals and urban surface waters in Sri Lanka and further offers valuable information on pre-COVID-19 era PAC distribution in the country. Environ Toxicol Chem 2022;41:298-311. © 2021 SETAC.


Subject(s)
COVID-19 , Pharmaceutical Preparations , Water Pollutants, Chemical , Environmental Monitoring , Hospitals , Humans , SARS-CoV-2 , Sri Lanka , Wastewater , Water Pollutants, Chemical/analysis
12.
Environ Sci Pollut Res Int ; 29(50): 75609-75625, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1872663

ABSTRACT

The concentrations and distribution of ß-blockers, lipid regulators, and psychiatric and cancer drugs in the influent and effluent of the municipal wastewater treatment plant (WWTP) and the effluent of 16 hospitals that discharge into the wastewater treatment plant mentioned in this study at two sampling dates in summer and winter were examined. The pharmaceutical contribution of hospitals to municipal wastewater was determined. The removal of target pharmaceuticals was evaluated in a WWTP consisting of conventional biological treatment using activated sludge. Additionally, the potential environmental risk for the aquatic receiving environments (salt lake) was assessed. Beta-blockers and psychiatric drugs were detected in high concentrations in the wastewater samples. Atenolol (919 ng/L) from ß-blockers and carbamazepine (7008 ng/L) from psychiatric pharmaceuticals were detected at the highest concentrations in hospital wastewater. The total pharmaceutical concentration determined at the WWTP influent and effluent was between 335 and 737 ng/L in summer and between 174 and 226 ng/L in winter. The concentrations detected in hospital effluents are higher than the concentrations detected in WWTP. The total pharmaceutical contributions from hospitals to the WWTP in summer and winter were determined to be 2% and 4%, respectively. Total pharmaceutical removal in the WWTP ranged from 23 to 54%. According to the risk ratios, atenolol could pose a high risk (risk quotient > 10) for fish in summer and winter. There are different reasons for the increase in pharmaceutical consumption in recent years. One of these reasons is the COVID-19 pandemic, which has been going on for 2 years. In particular, hospitals were operated at full capacity during the pandemic, and the occurrence and concentration of pharmaceuticals used for the therapy of COVID-19 patients has increased in hospital effluent. Pandemic conditions have increased the tendency of people to use psychiatric drugs. It is thought that beta-blocker consumption has increased due to cardiovascular diseases caused by COVID-19. Therefore, the environmental risk of pharmaceuticals for aquatic organisms in hospital effluent should be monitored and evaluated.


Subject(s)
COVID-19 , Water Pollutants, Chemical , Atenolol , Carbamazepine , Environmental Monitoring , Hospitals , Humans , Lipids , Pandemics , Pharmaceutical Preparations , Risk Assessment , Sewage , Waste Disposal, Fluid , Wastewater/analysis , Water Pollutants, Chemical/analysis
13.
Journal of Water Process Engineering ; 48:102834, 2022.
Article in English | ScienceDirect | ID: covidwho-1867447

ABSTRACT

Hospitals generate large volumes of wastewater. Dissolved organic matter (DOM) in wastewater effluent can act as precursors of disinfection by-products, transporter of pollutants, and affect the performance of treatment plants. This study aims to characterize the composition of DOM in medical wastewater and investigate the selectivity of the hospital treatment plant in the removal of DOM. DOM was characterized by Fourier-transform ion-cyclotron resonance mass spectrometry (FT-ICR-MS) and excitation-emission matrix fluorescence spectroscopy (EEMs). DOM of medical wastewater was dominated by aliphatic and highly unsaturated compounds, a feature that is remarkably different from that of natural DOM. In the membrane bioreactor (MBR) unit, more CHNO compounds and highly unsaturated compounds were formed. After disinfection, the highly unsaturated and humic-like compounds were reduced, accompanying a decrease in aromaticity. After reverse osmosis, the highly unsaturated and CHO compounds were concentrated and removed. These steps were complementary in the removal of DOM, suggesting effective transformation and elimination of DOM. This study contributes to a better understanding of the features of DOM in medical wastewater and treatment plant performance in the removal of DOM, which is indispensable for the large-scale design and application of technologies for hospital wastewater treatment, especially in the context of the COVID-19 pandemic.

14.
Pathogens ; 11(4)2022 Apr 09.
Article in English | MEDLINE | ID: covidwho-1785867

ABSTRACT

The outbreak of the coronavirus disease 2019 (COVID-19) raises questions about the effective inactivation of its causative agent, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in medical wastewater by disinfectants. For this reason, our study of wastewater from a selected hospital evaluated several different advanced oxidation methods (Fenton reaction and Fenton-like reaction and ferrate (VI)) capable of effectively removing SARS-CoV-2 RNA. The obtained results of all investigated oxidation processes, such as ferrates, Fenton reaction and its modifications achieved above 90% efficiency in degradation of SARS-CoV-2 RNA in model water. The efficiency of degradation of real SARS-CoV-2 from hospital wastewater declines in following order ferrate (VI) > Fenton reaction > Fenton-like reaction. Similarly, the decrease of chemical oxygen demand compared to effluent was observed. Therefore, all of these methods can be used as a replacement of chlorination at the wastewater effluent, which appeared to be insufficient in SARS-CoV-2 removal (60%), whereas using of ferrates showed efficiency of up to 99%.

15.
Environ Sci Pollut Res Int ; 29(57): 85742-85760, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1653698

ABSTRACT

Chlorinated disinfectants are widely used in hospitals, COVID-19 quarantine facilities, households, institutes, and public areas to combat the spread of the novel coronavirus as they are effective against viruses on various surfaces. Medical facilities have enhanced their routine disinfection of indoors, premises, and in-house sewage. Besides questioning the efficiency of these compounds in combating coronavirus, the impacts of these excessive disinfection efforts have not been discussed anywhere. The impacts of chlorine-based disinfectants on both environment and human health are reviewed in this paper. Chlorine in molecular and in compound forms is known to pose many health hazards. Hypochlorite addition to soil can increase chlorine/chloride concentration, which can be fatal to plant species if exposed. When chlorine compounds reach the sewer/drainage system and are exposed to aqueous media such as wastewater, many disinfection by-products (DBPs) can be formed depending on the concentrations of natural organic matter, inorganics, and anthropogenic pollutants present. Chlorination of hospital wastewater can also produce toxic drug-derived disinfection by-products. Many DBPs are carcinogenic to humans, and some of them are cytotoxic, genotoxic, and mutagenic. DBPs can be harmful to the flora and fauna of the receiving water body and may have adverse effects on microorganisms and plankton present in these ecosystems.


Subject(s)
COVID-19 , Disinfectants , Water Pollutants, Chemical , Water Purification , Humans , Chlorine , Wastewater , Chlorides , Ecosystem , Pandemics , Water Pollutants, Chemical/analysis , Disinfection , Halogenation , Halogens
16.
J Environ Manage ; 308: 114609, 2022 Apr 15.
Article in English | MEDLINE | ID: covidwho-1648358

ABSTRACT

Hospitals release significant quantities of wastewater (HWW) and biomedical waste (BMW), which hosts a wide range of contaminants that can adversely affect the environment if left untreated. The COVID-19 outbreak has further increased hospital waste generation over the past two years. In this context, a thorough literature study was carried out to reveal the negative implications of untreated hospital waste and delineate the proper ways to handle them. Conventional treatment methods can remove only 50%-70% of the emerging contaminants (ECs) present in the HWW. Still, many countries have not implemented suitable treatment methods to treat the HWW in-situ. This review presents an overview of worldwide HWW generation, regulations, and guidelines on HWW management and highlights the various treatment techniques for efficiently removing ECs from HWW. When combined with advanced oxidation processes, biological or physical treatment processes could remove around 90% of ECs. Analgesics were found to be more easily removed than antibiotics, ß-blockers, and X-ray contrast media. The different environmental implications of BMW have also been highlighted. Mishandling of BMW can spread infections, deadly diseases, and hazardous waste into the environment. Hence, the different steps associated with collection to final disposal of BMW have been delineated to minimize the associated health risks. The paper circumscribes the multiple aspects of efficient hospital waste management and may be instrumental during the COVID-19 pandemic when the waste generation from all hospitals worldwide has increased significantly.


Subject(s)
COVID-19 , Medical Waste Disposal , Hospitals , Humans , Medical Waste Disposal/methods , Pandemics , Risk Assessment , SARS-CoV-2 , Wastewater/analysis
17.
Environ Sci Technol ; 55(17): 12009-12018, 2021 09 07.
Article in English | MEDLINE | ID: covidwho-1483072

ABSTRACT

Diatrizoate, a refractory ionic iodinated X-ray contrast media (ICM) compound, cannot be efficiently degraded in a complex wastewater matrix even by advanced oxidation processes. We report in this research that a homogeneous process, thiourea dioxide (TDO) coupled with trace Cu(II) (several micromoles, ubiquitous in some wastewater), is effective for reductive deiodination and degradation of diatrizoate at neutral pH values. Specifically, the molar ratio of iodide released to TDO consumed reached 2 under ideal experimental conditions. TDO eventually decomposed into urea and sulfite/sulfate. Based on the results of diatrizoate degradation, TDO decomposition, and Cu(I) generation and consumption during the TDO-Cu(II) reaction, we confirmed that Cu(I) is responsible for diatrizoate degradation. However, free Cu(I) alone did not work. It was proposed that Cu(I) complexes are actual reactive species toward diatrizoate. Inorganic anions and effluent organic matter negatively influence diatrizoate degradation, but by increasing the TDO dosage, as well as extending the reaction time, its degradation efficiency can still be guaranteed for real hospital wastewater. This reduction reaction could be potentially useful for in situ deiodination and degradation of diatrizoate in hospital wastewater before discharge into municipal sewage networks.


Subject(s)
Diatrizoate , Water Pollutants, Chemical , Contrast Media , Oxidation-Reduction , Thiourea/analogs & derivatives , Wastewater , Water Pollutants, Chemical/analysis
18.
Sci Total Environ ; 804: 150264, 2022 Jan 15.
Article in English | MEDLINE | ID: covidwho-1401855

ABSTRACT

The presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wastewater produced interest in its use for sentinel surveillance at a community level and as a complementary approach to syndromic surveillance. With this work, we set the foundations for wastewater-based epidemiology (WBE) in Portugal by monitoring the trends of SARS-CoV-2 RNA circulation in the community, on a nationwide perspective during different epidemiological phases of the pandemic. The Charité assays (E_Sarbecco, RdRP, and N_Sarbecco) were applied to monitor, over 32-weeks (April to December 2020), the dynamics of SARS-CoV-2 RNA at the inlet of five wastewater treatment plants (WWTP), which together serve more than two million people in Portugal. Raw wastewater from three Coronavirus disease 2019 (COVID-19) reference hospitals was also analyzed during this period. In total, more than 600 samples were tested. For the first weeks, detection of SARS-CoV-2 RNA was sporadic, with concentrations varying from 103 to 105 genome copies per liter (GC/L). Prevalence of SARS-CoV-2 RNA increased steeply by the end of May into late June, mainly in Lisboa e Vale do Tejo region (LVT), during the reopening phase. After the summer, with the reopening of schools in mid-September and return to partial face-to-face work, a pronounced increase of SARS-CoV-2 RNA in wastewater was detected. In the LVT area, SARS-CoV-2 RNA load agreed with reported trends in hotspots of infection. Synchrony between trends of SARS-CoV-2 RNA in raw wastewater and daily new COVID-19 cases highlights the value of WBE as a surveillance tool, particularly after the phasing out of the epidemiological curve and when hotspots of disease re-emerge in the population which might be difficult to spot based solely on syndromic surveillance and contact tracing. This is the first study crossing several epidemiological stages highlighting the long-term use of WBE for SARS-CoV-2.


Subject(s)
COVID-19 , Wastewater-Based Epidemiological Monitoring , Humans , Portugal/epidemiology , RNA, Viral , SARS-CoV-2 , Wastewater
19.
Antibiotics (Basel) ; 10(9)2021 Sep 04.
Article in English | MEDLINE | ID: covidwho-1390513

ABSTRACT

Municipal wastewaters can generally provide real-time information on drug consumption, the incidence of specific diseases, or establish exposure to certain agents and determine some lifestyle consequences. From this point of view, wastewater-based epidemiology represents a modern diagnostic tool for describing the health status of a certain part of the population in a specific region. Hospital wastewater is a complex mixture of pharmaceuticals, illegal drugs, and their metabolites as well as different susceptible and antibiotic-resistant microorganisms, including viruses. Many studies pointed out that wastewater from healthcare facilities (including hospital wastewater), significantly contributes to higher loads of micropollutants, including bacteria and viruses, in municipal wastewater. In addition, such a mixture can increase the selective pressure on bacteria, thus contributing to the development and dissemination of antimicrobial resistance. Because many pharmaceuticals, drugs, and microorganisms can pass through wastewater treatment plants without any significant change in their structure and toxicity and enter surface waters, treatment technologies need to be improved. This short review summarizes the recent knowledge from studies on micropollutants, pathogens, antibiotic-resistant bacteria, and viruses (including SARS-CoV-2) in wastewater from healthcare facilities. It also proposes several possibilities for improving the wastewater treatment process in terms of efficiency as well as economy.

20.
Sci Total Environ ; 761: 143192, 2021 Mar 20.
Article in English | MEDLINE | ID: covidwho-912620

ABSTRACT

Currently, the apparition of new SARS-CoV, known as SARS-CoV-2, affected more than 34 million people and causing high death rates worldwide. Recently, several studies reported SARS-CoV-2 ribonucleic acid (RNA) in hospital wastewater. SARS-CoV-2 can be transmitted between humans via respiratory droplets, close contact and fomites. Fecal-oral transmission is considered also as a potential route of transmission since several scientists confirmed the presence of SARS-CoV-2 RNA in feces of infected patients, therefore its transmission via feces in aquatic environment, particularly hospital wastewater. Hospitals are one of the important classes of polluting sectors around the world. It was identified that hospital wastewater contains hazardous elements and a wide variety of microbial pathogens and viruses. Therefore, this may potentially pose a significant risk of public health and environment infection. This study reported an introduction about the Physical-chemical and microbiological characterization of hospital wastewater, which can be a route to identify potential technology to reduce the impact of hospital contaminants before evacuation. The presence of SARS-CoV-2 in aqueous environment was reviewed. The knowledge of the detection and survival of SARS-CoV-2 in wastewater and hospital wastewater were described to understand the different routes of SARS-CoV-2 transmission, which is also useful to avoid the outbreak of CoV-19. In addition, disinfection technologies used commonly for deactivation of SARS-CoV-2 were highlighted. It was revealed that, chlorine-containing disinfectants are the most commonly used disinfectants in this field of research. Meanwhile, other efficient technologies must be developed and improved to avoid another wave of the pandemic of COVID-19 infections.


Subject(s)
COVID-19 , SARS-CoV-2 , Disinfection , Hospitals , Humans , Technology , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL